Search results for "supervised learning"

showing 10 items of 87 documents

Health Indicator for Low-Speed Axial Bearings Using Variational Autoencoders

2020

This paper proposes a method for calculating a health indicator (HI) for low-speed axial rolling element bearing (REB) health assessment by utilizing the latent representation obtained by variational inference using Variational Autoencoders (VAEs), trained on each speed reference in the dataset. Further, versatility is added by conditioning on the speed, extending the VAE to a conditional VAE (CVAE), thereby incorporating all speeds in a single model. Within the framework, the coefficients of autoregressive (AR) models are used as features. The dimensionality reduction inherent in the proposed method lowers the need of expert knowledge to design good condition indicators. Moreover, the sugg…

0209 industrial biotechnologyGeneral Computer Sciencegenerative modelsComputer sciencecondition monitoring02 engineering and technologyLatent variableunsupervised learningFault detection and isolationBearing fault detection020901 industrial engineering & automationVDP::Teknologi: 500::Maskinfag: 5700202 electrical engineering electronic engineering information engineeringGeneral Materials Sciencevariational autoencoderconditional variational autoencoderbusiness.industryDimensionality reduction020208 electrical & electronic engineeringGeneral EngineeringPattern recognitionData pointAutoregressive modelRolling-element bearingFalse alarmArtificial intelligencelcsh:Electrical engineering. Electronics. Nuclear engineeringbusinesslcsh:TK1-9971IEEE Access
researchProduct

Adjusted bat algorithm for tuning of support vector machine parameters

2016

Support vector machines are powerful and often used technique of supervised learning applied to classification. Quality of the constructed classifier can be improved by appropriate selection of the learning parameters. These parameters are often tuned using grid search with relatively large step. This optimization process can be done computationally more efficiently and more precisely using stochastic search metaheuristics. In this paper we propose adjusted bat algorithm for support vector machines parameter optimization and show that compared to the grid search it leads to a better classifier. We tested our approach on standard set of benchmark data sets from UCI machine learning repositor…

0209 industrial biotechnologyWake-sleep algorithmActive learning (machine learning)Computer scienceStability (learning theory)Linear classifier02 engineering and technologySemi-supervised learningcomputer.software_genreCross-validationRelevance vector machineKernel (linear algebra)020901 industrial engineering & automationLeast squares support vector machine0202 electrical engineering electronic engineering information engineeringMetaheuristicBat algorithmStructured support vector machinebusiness.industrySupervised learningOnline machine learningParticle swarm optimizationPattern recognitionPerceptronGeneralization errorSupport vector machineKernel methodComputational learning theoryMargin classifierHyperparameter optimization020201 artificial intelligence & image processingData miningArtificial intelligenceHyper-heuristicbusinesscomputer2016 IEEE Congress on Evolutionary Computation (CEC)
researchProduct

Do Randomized Algorithms Improve the Efficiency of Minimal Learning Machine?

2020

Minimal Learning Machine (MLM) is a recently popularized supervised learning method, which is composed of distance-regression and multilateration steps. The computational complexity of MLM is dominated by the solution of an ordinary least-squares problem. Several different solvers can be applied to the resulting linear problem. In this paper, a thorough comparison of possible and recently proposed, especially randomized, algorithms is carried out for this problem with a representative set of regression datasets. In addition, we compare MLM with shallow and deep feedforward neural network models and study the effects of the number of observations and the number of features with a special dat…

0209 industrial biotechnologyrandom projectionlcsh:Computer engineering. Computer hardwareComputational complexity theoryComputer scienceRandom projectionlcsh:TK7885-789502 engineering and technologyMachine learningcomputer.software_genresupervised learningapproximate algorithmsSet (abstract data type)regressioanalyysi020901 industrial engineering & automationdistance–based regressionalgoritmit0202 electrical engineering electronic engineering information engineeringordinary least–squaresbusiness.industrySupervised learningsingular value decompositionminimal learning machineMultilaterationprojektioRandomized algorithmkoneoppiminenmachine learningScalabilityFeedforward neural network020201 artificial intelligence & image processingArtificial intelligenceapproksimointibusinesscomputerMachine Learning and Knowledge Extraction
researchProduct

Deep learning in next-generation sequencing

2020

Highlights • Machine learning increasingly important for NGS. • Deep learning can improve many NGS applications.

0301 basic medicineBiomedical ResearchComputer scienceContext (language use)ComputerApplications_COMPUTERSINOTHERSYSTEMSReviewMachine learningcomputer.software_genre03 medical and health sciences0302 clinical medicineDeep LearningGene to ScreenDrug DiscoveryHumansPharmacologyFeature detection (web development)Network architectureArtificial neural networkbusiness.industryDeep learningHigh-Throughput Nucleotide SequencingMedical research030104 developmental biologyMetagenomics030220 oncology & carcinogenesisUnsupervised learningArtificial intelligenceMetagenomicsNeural Networks ComputerbusinesscomputerDrug Discovery Today
researchProduct

Active learning strategies for the deduplication of electronic patient data using classification trees.

2012

Graphical abstractDisplay Omitted Highlights? Active learning for medical record linkage is used on a large data set. ? We compare a simple active learning strategy with a more sophisticated variant. ? The active learning method of Sarawagi and Bhamidipaty (2002) 6] is extended. ? We deliver insights into the variations of the results due to random sampling in the active learning strategies. IntroductionSupervised record linkage methods often require a clerical review to gain informative training data. Active learning means to actively prompt the user to label data with special characteristics in order to minimise the review costs. We conducted an empirical evaluation to investigate whether…

Active learningComputer scienceActive learning (machine learning)Information Storage and RetrievalContext (language use)Health InformaticsSemi-supervised learningMachine learningcomputer.software_genreSet (abstract data type)Artificial IntelligenceBaggingData deduplicationElectronic Health RecordsHumansbusiness.industryString (computer science)Decision TreesOnline machine learningComputer Science ApplicationsData miningArtificial intelligenceMedical Record LinkageString metricbusinesscomputerAlgorithmsJournal of biomedical informatics
researchProduct

Discovering single classes in remote sensing images with active learning

2012

When dealing with supervised target detection, the acquisition of labeled samples is one of the most critical phases: the samples must be yet representative of the class of interest, but must also be found among a vast majority of non-target examples. Moreover, the efficiency of the search is also an issue, since the samples labeled as background are not used by target detectors such as the support vector data description (SVDD). In this work we propose a competitive and effective approach to identify the most relevant training samples for one-class classification based on the use of an active learning strategy. The SVDD classifier is first trained with insufficient target examples. It is t…

Active learningComputer scienceActive learning (machine learning)business.industryPattern recognitionSemi-supervised learningRemote sensingMachine learningcomputer.software_genreSupport vector machineActive learningLife ScienceSupport Vector Data DescriptionArtificial intelligencebusinessClassifier (UML)computerChange detection2012 IEEE International Geoscience and Remote Sensing Symposium
researchProduct

Learning from good examples

1995

The usual information in inductive inference for the purposes of learning an unknown recursive function f is the set of all input /output examples (n,f(n)), n ∈ ℕ. In contrast to this approach we show that it is considerably more powerful to work with finite sets of “good” examples even when these good examples are required to be effectively computable. The influence of the underlying numberings, with respect to which the learning problem has to be solved, to the capabilities of inference from good examples is also investigated. It turns out that nonstandard numberings can be much more powerful than Godel numberings.

AlgebraTransduction (machine learning)Inductive transferComputational learning theoryInductive biasbusiness.industryAlgorithmic learning theoryUnsupervised learningMulti-task learningArtificial intelligenceInstance-based learningbusinessMathematics
researchProduct

Tecnhiques for sentiment analysis in Twitter: Supervised Learning and SentiStrength

2017

[EN] Sentiment analysis on Twitter offers possibilities of great interest to evaluate the currents of opinion disseminated through this medium. The huge volumes of texts require tools able to automatically process these messages without losing reliability. This paper describes two different types of approaching this problem. The first strategy is based on Supervised Learning processes, developed in the field of artificial intelligence. Its application requires some tools from natural language processing along with a classifed corpus as a starting point. The second approach is based on polarity dictionaries. SentiStrength tool is located in this line. It is increasingly applied to studies of…

Aprendizaje automático supervisadoSentiment analysisUNESCO::CIENCIAS DE LAS ARTES Y LAS LETRASAnálisis de sentimientoSentiStrengthPolitical communicationTwitter:CIENCIAS DE LAS ARTES Y LAS LETRAS [UNESCO]Comunicación políticaCOMERCIALIZACION E INVESTIGACION DE MERCADOSSupervised learning
researchProduct

Road Detection for Reinforcement Learning Based Autonomous Car

2020

Human mistakes in traffic often have terrible consequences. The long-awaited introduction of self-driving vehicles may solve many of the problems with traffic, but much research is still needed before cars are fully autonomous.In this paper, we propose a new Road Detection algorithm using online supervised learning based on a Neural Network architecture. This algorithm is designed to support a Reinforcement Learning algorithm (for example, the standard Proximal Policy Optimization or PPO) by detecting when the car is in an adverse condition. Specifically, the PPO gets a penalty whenever the virtual automobile gets stuck or drives off the road with any of its four wheels.Initial experiments …

Artificial neural networkComputer sciencebusiness.industrySupervised learningNeural network architectureReinforcement learningArtificial intelligenceReinforcement learning algorithmbusinessProceedings of the 2020 The 3rd International Conference on Information Science and System
researchProduct

Predicting hospital associated disability from imbalanced data using supervised learning.

2019

Hospitalization of elderly patients can lead to serious adverse effects on their functional capability. Identifying the underlying factors leading to such adverse effects is an active area of medical research. The purpose of the current paper is to show the potential of artificial intelligence in the form of machine learning to complement the existing medical research. This is accomplished by studying the outcome of hospitalization of elderly patients as a supervised learning task. A rich set of features characterizing the medical and social situation of elderly patients is leveraged and using confusion matrices, association rule mining, and two different classes of supervised learning algo…

Association rule learningmedicine.medical_treatmentvanhuksetMedicine (miscellaneous)sairaalahoitoOutcome (game theory)Task (project management)03 medical and health sciences0302 clinical medicineArtificial IntelligenceMedicineHumanstoimintarajoitteetDisabled PersonsSet (psychology)Adverse effectFinlandta316030304 developmental biologyAgedta1130303 health sciencesRehabilitationbusiness.industrySupervised learningennusteetta3142medicine.diseaseMedical researchHospitalizationmachine learningkoneoppiminenhospital associated disabilityMedical emergencySupervised Machine Learningtiedonlouhintabusiness030217 neurology & neurosurgeryrandom forestArtificial intelligence in medicine
researchProduct